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PREFACE

This report was prepared by Purdue Uriversity, School of Electrical

Engineering, Prof. J. E. Gibson acting as Principal Inestigator, under

USAF Contract No. AF 29(600)-1933. This contract is administered under

the direction of the Guidance and Contrr" Division, Air Force Missile

Development Center, Holloman Air Force Base, New Mexico by Mr. J. H. Gengel-

bach, the initiator of the study.



- iii -

FOREWORD

This is the fifth and last report to be completed under the Air Force

Project Number AF 29(600)-1933. The task specified under the above contract

is the specification of linear and nonlinear control systems. Toward the

achievement of this purpose, the first three reports deal with linear control

systems, while the last two concentrate on nonlinear systems.

Interim Report #1, titled "Specification and Data Presentation in Linear

Control Systems" was issued in July of 1959. This report was circulated

through the control industry and the universities, and a number of the lead-

ing industrial concerns in the country were visited in connection with the

contents of this report. As a result of this feedback, the basic material

of this interim report was expanded and published in two final reports,

namely, Final Report, Volume I, "Specification and Data Presentation in

Linear Control System;" October 1960, and Final Report, Volume II,

"Specification and Data Presentation in Linear Control Systems, - Part Two,"

May, 1961. These volumes also carry the Air Force Designation AFMDC-TR-61-5,

Parts One and Two, The first of these final reports deals with the specifi-

cation of continuous systems which can be described by linear differential

equations with constant coefficients. The second considers Sampled Data

Systems, Linear Time Variable Parameter Systems, and Performance Indicies.

Final Report, Volume III is a tutorial report titled "Stability of

Nonlinear Control Systems by the Second Method of Liapunov," and dated

May, 1961, (AFMDC-TR-61-6). This report was written to acquaint the interest-

ed reader with a technique, common in the USSR, that will serve as a tool in

the future nonlinear work, and not as a direct attack on the nonlinear con-

trol specification problem.
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The present report is an interim report which reviews the status of

the nonlinear control art, and specifically the area of nonlinear control

system specification. While the complexity of this problem is at least

an order of magnitude greater than in the linear case, it is felt that the

ideas presented here form the foundation from which a more detailed and

explicit attack on the general nonlinear specification problem may be built.

I
1



ABSTRACT

This is an interim report on the specification of nonlinear automatic

control systems. fAis concerned primarily with assessing the state of the

art of nonlinear control as a prelude to the solution of the actual specifi-

cation problem.

As an introduction, the classical methods of nonlinear analysis are

discussed, and the reasons for the inadequacy of these techniques for auto-

matic control systems are explained. The two generally known methods of

analyzing the stability of autonomous nonlinear control systems, namely

phase plane analysis and the describing function, are discussed and a

summary of Itie capabilities and limitations or-, 1n; a Method is

presented. The concept of the state variable and the state space is intro-

duced in some detail, as it is expected that this will be the medium through

which the stabi response of the majority of nonlinear systems will

be handled. The stability of the nonautonomous systeis als discussed from

the point of view of signal stabilization and the dual input escribing

function.

It is pointed codt that in addition to the stability of a nonlinear sys-

tem, its response ito a given input is of particular interest. Chapters 3 and
IV C3AL%- (,--1Z

4 are devoted to the response of autonmous and nonautonomous systems As a

criterion for specification, the time optimum system is stressed, and dis-

tinction is made between the solution of the time optimum problem as a per-

formance index and the synthesis of the optimum switching boundaries. The

phase plane is discussed for forced systems and the work of Wiener is mention-

ed in connection with the response of nonlinear systems to random inputs.
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CHAPTER I

INTRODUCTION TO NONLINEAR CONTROL SYST4S

1.1 Introduction

All physical systems are nonlinear, although in many systems this non-

linear effect is so slight that satisfactory results are obtained with

linear models. Many physical systems are nonlinear simply due to the lack

of component perfection. However, a significant number of systems are non-

lear through conscious design. Many times a nonlinear system will be

lighter, cheaper, more reliable, easier to fabricate and have better per-

formance than an equivalent linear system. Thus it is of great importance

to the Air Force that nonlinear control systems be properly specified.

This is an interim report on the specification of nonlinear automatic

control systems. It has three objectives:

a) to show why classical nonlinear mechanics has not provided

the tools neeled by the automatic control engineer thus far.

b) to assessthe present state of the nonlinear automatic control

art.

c) to point ou' the directions future work will take.

1.2 Classical Nonlinear Mechanics and Nonlinear Analysis as Applied to
Automatic Control

Classical nonlinear mechanics has generally been used for the analysis

of nonlinear problems, For some few problems it has been possible to find

closed form solutions in terms of the simpler functions. Generally, how-

ever, this attack fails. A number of books have been written on special

nonlinear differential equations and it would not be difficult to fill re-

port after report with such considerations. This is not necessary, however,
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nor would it even be proper, since seldom, if ever, will it be possible to

arrange even a moderately complex control system into a form which would

make use of available solutions. This is not to say, of course, that a

background of such techniques will not prove valuable to a designer. In

fact it is obvious that in a difficult field such as nonlinear automatic

control it is desirable to have as much training as possible.

It has been long realized, of course, that closed form solutions to

nonlinear differential equations are difficult to obtain and exist for

only a few special -lasses. For 100 years or more analysts have been

concerned with the approximate solution of nonlinear differential equa-

tions. Such series approximation techniques as perturbation and reversion

are well known. Other methods such as variation of parameters and harmonic

balance are also widely used. The mathematical justification of these

methods generally requires that the nonlinear variation be small and/or

slow and/or smooth. Sometimes the engineer is faced with nonlinear con-

trol systems in which none of these restrictions are valid and simulation

is the only practical solution. It is apparent that classical exact

solutions are of little value.

A number of excellent texts are available that will introduce the

engineer to nonlinear analysis. The recent book by Cunningham [I] is

notable for the clarity of presentation and the numerous worked examples.

Other well known books are those by Stoker [2], Minorsky [3] and Andronow

and Chaikin [4]. Somewhat more intense mathematically are the books by

Lefschetz [5] and Bellman [6].

._ Approximate Methods for Nonlinear Control

Modern approximate techniques of nonlinear system analysis are direct
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outgrowths of classical analysis, and one could probably relate them

directly to Poincare' and Liapunov, if there was any point in so doing.

This discussion will be avoided by pointing out that the newness lies

in the emphasis and phrasing of the problem and the prominence of geo-

metric and graphical interpretation, but not in techniques of analysis.

Chapter 2 of this report considers the more important of these

techniques in detail, so they need not be discussed here.

The state of the art in the analysis and synthesis of nonlinear

control systems is unsatisfactory, especially in its lack of generality.

It is almost impossible to rely on a single analysis to illustrate all

of the possible phenomena that can occur in a single system. For ex-

ample, it takes a different analysis to demonstrate jump phenomena than

it does to show subharmonic oscillation or frequency entrainment for the

same system. It does not appear that this condition will change in the

near future, because approximate analysis is not completely reliable,

and some other method must be used to supplement the analysis of a non-

linear control system. This other approach, widely used now, is computer

simulation which is discussed in the next section.

1.4 Computer Simulation

The major emphasis in this report is on analysis, because it is de-

sired to obtain an understanding of systems in general to facilitate the

evaluation and specification problem. However, it is recognized that

engineers use computer simulation for nonlinear system analysis more than

they use mathematical methods. There are several reasons for this.

lo Mathematical methods are not available or are not tractable for

the determination of system response. It is usually less ex-



pensive to obtain a transient response on a computer than by

analysis.

2. In a nonlinear system complete knowledge of any particular re-

sponse does not necessarily imply knowledge of any other response.

Thus, it may be nece,, sary to obtain thousands of responses to

establish confidence in a design. This makes all but the simplest

calculations uneconomical.

3. Actual systems are often much more difficult to analyze than simple

text book examples. It may be necessary to include some actual

pieces of hardware in the simulation if they can not be described

adequately. Analysis, of course, is not this flexible.

4. Engineers who do design work may not be aware of the mathematical

tools available for design and evaluation.

5. Design engineers are usually more interested in a specific system

than general trends which are available from mathematical analysis.

Hence, a thorough simulation is often adequate for their purposes.

For example, the parameters of a simulated system can be varied and

the resulting response observed for system synthesis.

The present inadequacy of nonlinear analysis should not lead one to

abandon all attempts at analysis and to a complete reliance on computer

simulation; a combination of simulation and analysis seems more nearly

optimum than simulation alone. Some analysis, even with incomplete or in-

exact models, will yield insight not always available from simulation.

Major advances in theory and hence hardware, will be delayed if attention is

not given to the mathematical treatment of systems.

Thus the tentative recommendation of the Purdne group will no doubt in-
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volve a parallel use of computer simulation and modern approximate ana-

lytical techniques for the specification of nonlinear control systems.

1.5 Future Trends

In each of the following chapters an assessment of the importance

upon future developments of the techniques discussed is given. In fact,

because of the present incompleteness of existing techniques, a great

deal of space in this report seems to be given over to damning the status

quo. This may be interpreted as an undesirable situation and to provide

cause for discouragement. The Control and Information Systems Laboratory,

on the other hand, feels that specifically pointing out the deficiencies

means that we have at least progressed to the point where we recognize the

problem. This could not have been said of most automatic control engineers

as late as 4 or 5 years ago.

The reader of this report, especially if he has been concerned with

automatic control systems for a decade or more, will recognize an almost

revolutionary change in techniques and emphasis compared with what might

be called, "Classical Automatic Control". This is the collection of tech-

niques available in almost all of the texts in English. The "New Automatic

Control" is more advanced mathematically and calls upon the digital computer

as an on line element more-and-more frequently. It works frequently in a

non-physical state space and attempts to find the theoretical limits of

performance based upon ultimate physical limitations on the system, such

as finite energy or torque or velocity, but without consideration of the

detailed construction of any particular configuration. In other words, the

optimum problem becomes important. The ultimate time optimum systems are

studied and the self optimizing or adaptive problem is of concern.

I
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The "New Automatic Control" is, as yet, essentially an academic

discipline. The reader will see that few if any practical systems have

benefited as yet from this approach. However, only 5 to 10 years after

the classical. automatic control matured in the early 1940's, it became

an essential part of engineering system desigii. It seems entirely

possible that the 1960's will witness a similar impact on industrial

4nd aerospace system design due to the "New Automatic Control". I
When reading some of the mathematical work contained in the report,

the reader should keep in mind that a mathematical treatment of a problem

is usually the starting point for engineering effort, rather than a

practical problem solution. For example, while the formal solution is|

desired for the general, time varying, optimum, switched system problem,

it must be realized that practical, general problems are either not

mathematically tractable or are trivial. In addition, it should be

pointed out that practical aspects of the problem such as end point

switching, instrument imperfections, etc. have not been included in the

general formulation. This single example serves the purpose of illustrating

the obvious - much research remains to be done in the nonlinear area of I
control systems. I

I
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j CHAPTER II

STABILITY OF AUTONOMOUS SYSTEMSI
2.1 Introduction

The word "stability" is frequently interpreted by engineers as tha t

property of a system which yields a bounded response to any bounded input

or load disturbance. While such interpretation is correct in linear,

stationary systems, it may easily lead one to erroneous conclusions in

the case of nonlinear systems. In nonlinear stationary systems the

"boundedness" of response to bounded inputs no longer guarantees that the

unforced system response will return to the equilibrium state asymptotically

I in time. Neither is the converse true (i.e., asymptotic stability does not

I always imply total stability or stability in the presence of bounded inputs

and/or load disturbances).

1Additional complications arise due to the fact that in nonlinear sys-
tems stability of an equilibrium state is no longer a global concept but only

I a local system property (i.e., a nonlinear system may be stable for sufficient-

Ily small initial disturbances and become unstable because of a sufficiently

large disturbance, and vice versa). Furthermore, it is conceivable that a

nonlinear system may be stable for certain bounded inputs and become unstable

for other bounded inputs. Hence, in the analysis, synthesis, and specifica-

I tion of nonlinear automatic control systems, total stability (i.e., stability

in the presence of any bounded input or disturbance) is the ultimate (al-

though not always necessary) goal. Nevertheless there are several important

reasons why the stability of autonomous (unforced, stationary) control sys-

tems is of considerable importance:1
1



1) It is important to know the behaviour of the system in the absence

of inputs and load d"sturbances.

2) In the presence of constant inputs and/or constant load disturbances

a nonlinear control system can still be described by a set of auto-

ncmous differential equations.

3) Stability of the equilibrium state (i.e., stability in Liapunov

sense) or boundedness of unforced stationary system response (i.e.,

stability in Lagrange sense (La Salle [7] ) implies boundedness of

the response to bounded inputs or total stability in most (if uot

all) physical systems.

This chapter is devoted to a discussion of the more general or more

promising methods of stability analysis of nonlinear autonomous systems.

2.2 The Describing Function Method of Analysis

The describing function (D.F.) method of analysis is appealing from a

practical point of view because it is an attempt to linearize a certain class

of nonlinear systemand then apply the methods of linear system stability

analysis. Engineers are accustcoed to making simplifying assumptions and

using linearized models for the analysis and synthesis of nonlinear systems.

The D.F. is based on the method of harmonic balance (Kryloff [8]), (Cunning-

ham [1]). Several papers (Goldfarb [9]), (Kochenburger [10]), (Tustin[Ill]),

(Opprit [12]) have advanced this idea. The most common describing function,

or the so-called equivalent gain, is defined as the complex ratio of the

amplitude of the fundamental component of the output of a nonlinearity to the

amplitude of the input to the nonlinearity when the input is sinusoidal. Re-

strictions such as low pass filtering must be met by the system for the

analysis to be valid. A detailed discussion of the method is unnecessary here
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since the D.F. is one of the most well, known methods available for the

analysis of autonomous nonlinear systems.

The D.F. method can be used to determine the stability of an auto-

nomous system and provides a designer with the information necessary to

synthesize stabilizing networks. If an autonomous system has a stable

limit cycle, the approximate amplitude and frequency of the first harmonic

term of the oscillation can be predicted. It is possible to obtain higher

harmonic correction terms (Johnson [13]) which improve the accuracy of the

method. The work required to calculate the correction terms is generally

not justified because these terms are relatively small in systems which

possess adequate low-pass filter characteristics. Their main utility is

the confidence established in the validity of the D.F. if these correction

terms are relatively small. Gille, et al. ([14], p43) point out that cases

are unusual where the error introduced in neglecting the higher harmonic

terms exceeds 10 per cent, and that the accuracy of limit cycle frequency

obtained from the D.F. is usually better than 5 percent.

Levinson [15] and other investigators (Hill [16]) have used the de-

scribing function to predict the closed loop frequency response of station-

ary nonlinear systems. By writing a quasi-linear error transfer function

and solving (usually by means of a computer or graphical techniques) for a

value of error which satisfies this quasi-linear transfer function, error

is determined. Knowing the error, the response may then be found. Multiple

roots of the solutions of the above transfer function yield information

about the Jump phenomena of the system. This is a laborious process and

different results are obtained for different amplitudes of the input, since

the system is nonlinear. This method is valid only for nonlinear systems
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that are totally stable. If this point is not recognized, it is possible

to obtain erroneous results. Further discussions regarding frequency re- P

sponse of nonlinear systems are given in the section on Dual Input Describ- t

ing functions in the next chapter. a

The D.F. method continues to be a vehicle for nonlinear research as 0.

well as design. Perhaps the major disadvantage of the method is that it 0.

is limited to frequency analysis. Of course, other methods share this t(

deficiency also. 2,

Tsypkin [17] has presented a method equivalent to the D.F. method for

the exact analysis of unforced on-off (relay) systems. This method retains
or

all harmonics generated by the nonlinear element, When harmonics are st

neglected and only the fundamental ccmponent of the output of the nonlinear th

element is used, this method reduces to the conventional describing function li

method of analysis. The use of this method is not warranted in systems which di

possess sufficient high-frequency attenuation such that the approximate de- ot

scribing function method of analysis is adequate. Furthermore, the method
an

of Tsypkin is practical only with very simple nonlinearities, such as a re-

lay, and cannot be applied to more general types of nonlinear systems.
an(

2.3 Phase Plane Analysis fo

The phase plane method of analysis is applicable directly to only second is

order nonlinear autonomous systems. This method consists of i. vestigating tic

the behavior of the trajectories of system response in the plane of some ide

system variable and its first time derivative. A detailed discussion of the ent

phase plane method of analysis Qan i,- -ound in many textbooks on nonlinear U.

analysis [i]. The

sta
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A generalization of the phase planie analysis is the analysis in the

phase space, i.e., in the space of a variable of the system and its n-1

time derivatives where n is the order of the system. Unfortunately, the

amount of labor involved in constructing the phase trajectories in systems

of higher than second order is prohibitive [18]. Hence the practical use

of the phase space (phase plane) method of stability analysis is limited

to only the second order autonomous nonlinear systems.

2.4 The Concept of State Space

Before proceeding with the analysis and synthesis of a control system,

one has first to find a mathematical description of such a system. In

stationary linear systems this is usually accomplished by first expressing

the interrelationships between various variables of the system in terms of

linear differential equations with constant coefficients. Then these

differential equations are changed (by means of the Laplace transform or

other integral transforms) into transfer functions and combined to yield

an overall transfer function.

In nonlinear systems the Laplace transformation is no longer applicable,

and thus the mathematical description of the system must be retained in the

form of differential equations. The most convenient form for many purposes

is a description of the system by means of n first order differential equa-

tions. This can always be done in a straight-forward manner by properly

identifying the variables appearing in the system. The number of independ-

ent first order differential equations is equal to the order of the system

(i.e. to the order of a single differential equation describing the system).

The set of n independent first order equations completely describes the

state of the system at any time t. Hence a set of n linearly independent
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variables will be referred to as a set of state variables and the Euclidean

space of these state variables as the 3tate space. One may note that an

infinite number of state variable sets may be chosen to represent the same

system. Probably the simplest set of stave space variabi-s is the set of

phase space variables (Sec. 2.3).

To assist in the design and analysis of nonlinear systems a standard

form for the differential equations and the system block diagram (if appli-

cable) is used in terms of variables that are not necessarily those of the

physical system. The term "canonic form" is used frequently and inter-

changeably with the term "standard form". It implies one of several of the

simplest and most significant forms to which general equations may be

brought without loss of generality. The form is mathematically convenient

and the advantages of such a form out-weigh the advantages of retaining

the system physical variables. It is often convenient, in fact, to write

the equations of any system, linear or nonlinear, of high or of low order,

in such A 'anonical form.

The principal characteristic associated with systems in canonical

form is that the different variables are "separated", i.e. each of the n

first order differential equations contains only one variable, or if this

is not possible, some may contain two variables.

A particular form of the system variables may be chosen, therefore,

so that the system equations in terms of these variables will reduce to the

standard or canonical form. The new variables, (yI' .... yn) associated with

the canonical form of the system eqiations, are related by a linear trans-

formation to the system physical vaAables (xl, x 2 , ... xn) such that:
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x1 ' P11yl + PI2Y2 ......... .Plnyn

* ~. (2.1)

xn - Pnlyl + Pn2y2 .......... Pnnyn

or in matrix notation (Pipes [191, Chapter 4)

fx} PIV (2.2)

or

{ y - [P]'x (2.3)

where

[P] - a square nxn matrix with elements PiJ

[P- -. inverse of [P]

I fy4- a nxl matrix with elements Yi

Nx- a nxl matrix with elements Xi

The theory of linear transformations indicates that the basic propertieu of

jthe system (e.g. the characteristic roots or eigenvalues of the system linear

portion) are identical in either set of variables [1], p. 89).

IIn the language of a positional control system, one new variable could

jbe defined in the form:
Yl Px + Qv + Ra where x position (2.4)

VI- Ylocity

a - acceleration

IP,Q,R - constants

This example indicates that the physical meaning of the new variables usually

is obscure. The mathematical simplification that results is, however, of

considerable importance.

With the physical meaning of the new variables obscure, one can, with

I very little further effort, consider them to be measured in Euclidean n-.space

I
I
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along a set of n mutually perpendicular axes. We have, therefore, the

vector:

{ " 't =y- + y*Y .. + Y naYn (2,5)

' 2 
,

where the ayn are unit vectors defining the axes in n-space. This vector

in n-space describes the state of the system completely.

There are an infinite number of square matrices [P] that will perform

a linear transformation on the physical variables, xie...xn . The choice of

[P] is criticaJ, therefore, in that it defines the canonical form in which

the system equations are written.

The procedure that can be followed to select the matrix [P] will be

described by using a particular example. Consider the closed-loop system

with separable nonlinearity as shown in Figure 2.1. It is assumed that the

differential equations for the actual system have been written and expeessed

in the form shown in this figure. From this form the following relations

can be written:

Ej(s) = Ri(s) - Xl(s) (2.6)

X(s) 1 (2.7)

U(s) s(s + 1) (s + 2)

which when combined and transformed to the time domain give:

d3 e 1  3d 2 e, 2de I  d3 r 3d 2 r 2dr (2.8)
3-- + +_ (-)u +77 + +

dt dt dt dt dt dt
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For a given input r(t), the quantity d3r d + 2dr is known

dt dt dt

and will be abbreviated f(t).

New variables are now introduced,

doI an do 2 
(2.9)e 2 =- _ ade-

dt

so that equation 2.8 can be re-written:

de1 - (0) el + (1)62 + (0)e3+(O)u + (O)f

de2 - (0) el + (O)e2 + (1)e3+(O)u + (O)f (2.10)

dt

- (0) 01 + (-2)e2+(-3)e 3+(-l)u + (1)f

or

l 0 1 0 e 0 0 (2.11)

e - 0 0 1 2  + 0 0

0 -2 -:N3 1 f

which in matrix notation becomes:

{e A]} + [B]{u} + (r} (2.12)

Any systems which are linear in the sense that the elements being controlled

are linear and where the steering function, u(t), enters linearly as a function

of time can be reduced to a similar form. In this example the [A] ma-rix,

the system matrix, has elements that are constants because the linear portion

of the system had constant coefficents. If the linear portion of the system

had been time varying the matrix elements would have been time varying. In

general the [B] matrix would be nxr and the (u} vector of dimension r; in



this example r = 1.

It is emphasized that while any system will reduce to the form of

equation (2.12) the details of the equation are not unique for a given

system. If Figure 2.1 is rearranged as in Figure 2.2, equation (2.11)

becomes:
-i 00 0

e? 0 1 0 ell 0 g
11 a I
el0-1 1 el + 0 u + 0 (2.1,3)

2 2

*e0 0 -2 e'l 1 0
33

where g - r This equation obviously has the same form as equation
dt

(2.11) but differs in detail.

Thus far the variables used are close to the physical variables,

though they may not be available directly in the system. Should the

system have zero input the equations can be written directly in terms of

the output and its derivatives, x 1 .... x n . Returning to Figure 1 and set-

ting r(t) 0, the following equation can be derived to replace equation

(2on1).

ii 0 1 0 X10

-0- 0 1 + +0 u (2.)14
'22

0 -2 -3 +1

or

(} [A]x7} [B A- {u} (2.15)

The details of equation (2.14) are, of course, not unique either.

Ybe nrw variables (y) associated with the state space to be used and

related to the existing variables (xA or ( by equations (2.7) and (2.8)
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Figure 2.2

The System of Figure 2.1 RedrawnI
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must now be found. The form of the matrix [P1 must be determined on the

basis that the equations will transform into a form that is mathematically

convenient. There are a number of technique9 available that will yield

the elements of this matrix. Other methods yield, directly, the system

impulse response matrix [H] which will be used and defined later in this

section. The methods are, for example: The classical method of separation

of variables ([19] , Chapter 4, Section 20): The general solution by La-

grangeb method of variation of parameters which )i-elds the [H] matrix

directly (La Salle [20], Section 2), (Bellman [21], Chapter 10, Section 12):

The method reported by Kalman [22]: Lur'e's canor.nical form and the psuedo

canonical form (23] Chapter 2): Solution in terms of the Jordan canonical

form (Kaplan [24], p. 289): A summary and variations on several methods by

Kurzweil [25].

The example system chosen, described by equations (2.11) and (2.14),

is characterized by the fact that the linear portion has real, distinct

poles, i.e. the system matrix [A] has real, distinct eigenvalues given by

the solution of the equation I[A] - X[I]l - 0 ([1] p. 88). The method to

use in the determination of the matrix [P] depends, as is described in the

above mentioned references, on the form of the system differential equations.

In this case, the example of equations (2.11) and (2.14), the classical

method can be used.

The solution of the equation l[A] - )[I] - 0 yields the three values

of X: XI . 0, l 2 - -1 and X3 m -2.

The solution of the matrix equation:

[- ,1]fP - 0 (2.16)
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Pil

where the vector { P}

ti2
Pi

3

is an eigenvector associated with the eigenvalue Xi for i - 1, 2 and 3

will give the three columns of the matrix [P].

With J - 1, X - 0 gives

P12 - 0

P13 M 0 (2.17)

-2P12 - 3P13 - 0

This yields

where a is an arbitrary real number.

Then i - 2, X2 - -1 gives

P21 + P22 =0

P22 + P23  -0 (2.18)

-2 P22 -2 P23 -0

This yields

rb

P{ ,,,w-b

b

where b is an arbitrary real number.

Then i = 3, X3  -2 gives

2P3 1 + P32  - 0

2P32 + P33 W 0 (2.19)

-2P32 - ]'33 - 0
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This yields

where c is an arbitrary rea.,. number.

The matrix is therefore given below together with the inverse matrix:

a b c/] i/a -[P] 0 -b --/-1 [Pi- - b /
[o b c 0 2/c -2/c

Substituting the transformation (e} - [P] fy) into equation (2.12)

j~[j- [A][P]y + [B]{u} + ff

• - LPJ-LAJLPjfy [] lBJfu) + LPJ-t'f (2.20)

.0* f;)u [P 14 Y + [w] fIu} + [n]'1 {f}

For the example N can now be calculated easily as:

0 -1 0 which is independent of the constants a, b, and c.

0 0 -2

and choosing for convenience a b 1 and c 2 then:

F-f[W] {1 and [P]P (fl [Q] {r) {=f

In terms of the new variables, the canonic state variables y equation

(2.11) can be written:
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0 0

T0i 10
I0 Y2  u (2.21)

03 0 -21M

This is a canonical form for the original equation which is convenient

mathematically as the variables are separated and the constants have been

reduced to unity#

Consider a component equation of the last form of equation (2@20)1

;i N Xivi~ + 2 ik +L Qijfj (2.22)

k 3

This equation is integrable if the functions ui and fi are real and measure-

able and if the initi.al condition vector (y(O) is known.

Multiply (2.21) by *" it then:

d ( je i)-e>~~Ku~ i jf (2.23)
Yi k 3k+0 i

and

- e>ity()) * f WikukdT*

+ O Qjjfjdt (2.24)

or, returning to matrix notation, the general solution iss

(2.25)

The u arix [G] is called the "system impulse response matrix" and is definedt
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-[A]v [' 2. 2'( 6
[G [I] [A], 2,1,(.2.26)

for linear systems in canonical form.

Transform equation (2.24) back to the original variables using fYI) *P-f)
[PIlto)} *CF [afP 1 to(o) I. [C;o)'[P) 2[B~fu)dt +

[]ft -L-ml[ "tfd (.7

-l

£4} ..[,][G][P]'z{e(o)} [P][+][P]J t [][f]' [P]f[]{ dt'.
0

an writingyb [] ad e [Pi d thereno t h

[ ]-] [ ] o +][ ]"  (2.29)

equ'tion (2.29) become9

{e} + [H](e(0.a+ [H]ft[H][B7Jtu~dt4 [H]g [H](f dr (2.30)

'rhe matrix [H] is now the system impulse response matrix in terms of the

original variables el . , . . .e and is defined in terms of the system matrix [A]$

2 2[ .[A]- . L] + [ . ...... (231)

A oystemn impulse response matrix [H] can always be obtained from

knowledge of the system matrix [A]. The system matrix [A] cannot always

be diagona ized, to yield the matrix [A], however, unless the eigenvalue5

i re rp:il, and distinct. The mntrix [A] can always be put into the Jordan
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canonical form, using a suitable transformation ([24), p. 287) ([21],

p. 191) and the resulting equations in terms of canonic state variables

can be integrated.

Returning to the example of this section for a moment and writing

equation (2.21) in component form gives the three equations:

@.V1 (°)y + u- f

Y2 = (-1)Y2 - u- f (2,32)

y3  - (-2)y3 + u- f

and Laplace transforming:

sYl - (o)Yj - U - F

sY2 -(-I)y 2 w U - F (2o33)

sY3 -(-2)Y 3 - U- F

The block diagram of the equations -33)is drawn in Figure 2.3.

The fact that the variables have been "separated" can be seen clearly by

comp.,iring Fig. 2.3 with the original block diagram (Fig. 2.1).

The systems to be discussed in the remainder of this volume will

frequently be expressed in terms of canonic state variables.
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F(Sr) +_ _

Figsr 2.3

The System of Figure 2.1 Redrawn in

Terms of the Canoniic State Variables
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2.5 The Second Method of Liapunov

The Second (Direct) Method Of Liapunov (SML) is theoretically the

most general available method for stability analysis of nonlinear sys-

tems. A detailed mathematical discussion of the SML is contained in the

books by Malkin [25], Zubov [26], Hahn [27] and in various papers, notably

those by Kalman and Bertram [28] and La Salle [7]. An introductory treat-

merit of the SML and some of its engineering applications are contained in

[29] (Boston Workshop on the SML). Technical Report TR-61-6 of this con-

tract [30] deals with the engineering applications of Liapunov's second

method.

Three major limitations of the SML in the analysis of autonomous

nonlinear physical systems are presently:

1. There are no known straight-forward procedures of construct-

ing Liapunov functions for the general class of nonlinear

autonomous systems. One success depends largely upon in-

tuition and experience.

2. The known Liapunov functions for special types of nonlinear

systems yield sufficient but not necessary conditions for

stability,

3. The SKL is, at the present state of the art, not directly

applicable to systems with limit cycles, no matter how small

and insignificant the limit cycle oscillations may be.

A survey of the most widely applicable methods of constructing Liapunov

functions. including some results of research at Purdue, is contained in

Technical Report TR-61-6 of this prcject [30]. Many autonomous systems con-

taining nonlinear gain elements can be analyzed successfully by the SML by
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means of the canonic transformations of Lur'e [31], Letov [32] and the

pseudo-canonic transformations developed at Purdue [35]. Attempts have

recently been reported to analyze, by the SKL, the stability of relay

(switched) systems (Alimov, [33] ) and systems with time delay (trans-

portation lag), (Razumikin, [34]).

The failure of the SML to yield necessary condi ions for stability

is frequently the result of its inability to predict limit cycle os-

cillations. Some progress in extending the applicability of the SML

to systems containing limit cycles has been reported by Zubov [26] and

La Salle [7]. Rekasius and Szego developod a procedure whereby one is

able to find a closed, bounded region in the state space in which the

limit cycle is confined, without the need for exact solution of the

limit cycle [35].

Hence the present day practical limitations in the applicability of

the SRL in stability analysis of autonomous nonlinear systems are gradually

diminishing. It appears that continued research efforts will make the %L

a very practical and powerful tool for the stability analysis of autonom-

ous nonlinear systems.
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CHAPTER 3

STABILITY OF NON-AUTONMOUS SYSTERS

3.1 Introduction

Despite the fact that autonomous and nonautonomous systems have

been defined precisely in Chapter 1 of this volume, it will be worth-

while to review quickly those definitions and discuss their applica-

bility in this chapter. The term "autonomous" refers to a free (un-

forced) time invariant system whereas the term "nonautonomous" refers

to a time invariant (stationary) system subjected to inputs (forced

system) or to time variable parameter (nonstationary) systems irre-

spective of whether they are forced or not. In this chapter a

distinction between unforced and forced will be made instead of a

distinction between autonomous and nonautonomous systems.

It will suffice to mention at this point that the problem of

determining the stability of a nonstationary nonlinear forced system

should be relegated into the backgroundiuntii the problem of obtaining

the stability information of a stationary, nonlinear forced system is

solved.

Considerable effort has been expended by various researchers,

particularly by mathematicians investigating the stability theory of

differential equations, to obtain methods of determining the stability

of unforced systems. In general, an unforced system is a fiction which

does not exist in practice. Every control system is forced, either due

to inputs or disturbances or both.

One possible reason for the existence and continuing increase of the

vast amount of literature dealing with the stability of nonlinear unforced



- 29 -

systems by technical journals may be due to the fact that most engineers

still think of nonlinear systems in terms of analogous linear time-

invariant systems. It is a fairly common practice to try to extend

familiar concepts applicable to special cases to more general cases.

Unfortunately, this method often leads nowhere. This is evidenced, for

example, by the tremendous though essentially unsuccessful efforts that

have been made to extend the use of the familiar Laplace and Fourier

transforms to analyze linear 'ime variable parameter systems [23].

The stability characteristics of a linear system are the same

irrespective of whether there are any inputs to the system or not. Hence

it is common practice while studying the stability of linear systems to

consider only the unforced case. There is considerable justification in

adopting this procedure since the stability of both the forced and un-

forced systems are simultaneouslv determined.

A practicing control engineer has very little use for methods which

yield stability information for unforced systems only, since every actual

control system is governed by a differential equation with a forcing

function. Unfortunately, most methods that are available at the present

to investigate the stability of nonlinear systems seem to be applicable

only to the unforced case. Even a regulator is not an unforced system

since, despite the fact that the input is a constant and hence the devia-

tions of the input from a steady state value are zero, the output and

load disturbances make the system forced.

The last paragraph should not be interpreted to mean that the stability

of the unforced system is unimportant. It is quite possible, however, that

an unstable (in the sense that limit cycles of undesirable amplitudes might

exst in the system) unforced system may become stable (in the sense that
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the limit cycle may be reduced in amplitude or quenched altogether) when

subjected to inputs. A special case of this occurrence is the phenomenon

of signal stabilization, discussed later. However, it is also quite J':ely

that for some period of time the system may be exposed to constant inputs

or load disturbances. In this case the system is mathematically equivalent

to an unforced system. Hence it is necessary to impose restrictions on the

stability characteristics of the unforced system. The ccmments in the last

paragraph apply to methods which are useful for investigating unforced

systems only and not to the unforced systems.

The nonexistence of suitable methods for investigating the stability

of forced nonlinear systems is further complicated by the very concept of

stability for these systems. The familiar concept of stability which is

straightforward and intuitively easy to understand in the case of linear

time invariant systems takes on a more subtle and difficult aspect in the

ca.,e of nonlinear autonomous systems in general and nonlinear nonautonomous

systems in particular. Antosiewicz [36] defines several distinctly differ-

ent types of stability for nonlinear systems.

Considerable research is warranted before any conclusions may be drawn

regarding methods of investigating stability of forced nonlinear systems.

One general method which is capable of further extension and two special

inter-related methods useful for investigating the stability of certain

specific stationary nonlinear forced systems are considered in this section.

Needless to say, the philosophy of presentation of this section may seem

to have overtones of pessimism because of the present state of the art of

nonlinear systems in general and nonlinear forced systems in particular.
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3.2 The Second Method of Liapunov

While the SML still is, theoretically, the most general available

method for stability analysis of unforced nonlinear systems, its practical

application is still in its infancy despite the fact that several special

techniques are available for specific nonlinear unforced systems. To em-

phasize the enormous difficulties encountered in stability analysis of

unforced nonlinear systems, it is sufficient to note that even the problem

of linear time-varying systems still awaits its solution.
As pointed out earlie. additional difficulties encountered in the

application of the SML to forced systems are due to a number of distinctly

different types of stability which manifest themselves only in nonautonom-

ous systems. Consequently the theorems of the SML of stability and in-

stability take on different forms, depending upon the type of stability

which is to be proved. Many stability and instability theorems for un-

forced systems. stationary and nonstationary, based upon the SR1 are

contained in the books by Hahn [21] , Zubov [26] , Malkin [25] and in the

papers of Antosiewicz [36] and Kalman at d Bertram [28]. Very little is

known, however, at the present time of how to construct Liapunov functions

for nonautonomous systems. A few studies of stability of special cases of

time-varying parameter systems are scattered in the periodical literature,

primarily in various issues of Automatika i Telemekanika (Automation and

Remote Control) and Prikladnaja Matematika e Mekanika, (P.M.M.).

Mhile there is little hope yet for a major breakthrough in the practi-

cal application of the 9i4L and the methods of construction of Liapunov

functions for the general case of forced nonlinear system, some special

cases may in the near future become practically managable. These are,
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for examplethe stability of linear time varying systems (Szego, [37]),

and the analysis of systems with periodically varying coefficients, etc.

Despite the fact that the solution of this problem does not solve the

problem of determining the stability of nonlinear forced systems, it is

hoped that it will provide some insight into the latter problem.

Very little is known about the problem of the stability of a general

nonlinear system subjected to inputs from the point of view of the SNLo

However it is sometimes possible to invoke Massera's theorem [38] which,

in essence, states that a sufficient condition for the total stability

of a forced nonlinear system (stationary or nonstationary) is that the un-

forced system be uniformly asymptotically stable. Massera's theorem is

still not very useful for nonstationary nonlinear systems since, as pointed

out earlier, the application of the SRL even to nonstationary linear sys-

tems is not easy. However, Massera's theorem may have some use in the case

of a stationary nonlinear system since certain methods for applying the

SML to certain special classes of nonlinear systems are available in the

literature. Notice, however, that the use of Massera's theorem imposes

severe restrictions on -the stability characteristics of the unforced sys-

tem. Uniform asymptotic stability may be a sufficient but not necessary

condition for acceptance of an engineering system0  This condition ex-

cludes, for example9 all systems hich may possess small limit cycles for

some specific values of the system parameters.

At the present state of the art the SML for forced nonlinear systems

is a fruitful area of research but has so far yielded very little of C

practical importance. 
t

t
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3.3 Signal Stabilization

The stability characteristics of a linear system are unaffected by

the inputs to the system. This however is not true, in general, for

nonlinear systems. The possibility of changing the stability character-

istics with different inputs is the property which allows "signal stabili-

zation".

Feedback Control Systems in a state of self sustained oscillations

(limit cycle operation) resulting in output hunt may often be stabilized

by the introduction of an external signal of a sufficiently high frequency

at a convenient point in the loop. This phenomenon is termed "signal

stabilization" by Oldenburger [39]. Here a system is said to be stabilized

if the amplitude of the output hunt is reduced below a certain prescribed

value. A first attempt to explain this phenomenon when the waveform of

the "stabilizing signal" is sinusoidal is due to Oldenburger and Liu [40].

The theory developed by Oldenburger and Liu is quite different from the

one advanced by Minorsky r41], wt.o treated the use of a signal to excite or

quench the hunt (self oscillation) of a physical system described by a

particular type of second order differential equation. Oldenburger and

Nakada E42] extend the theory of signal stabilization to a rather general

class of nonlinear systems with a triangular waveform stabilizing signal.

Sridhar and Oldenburger E3], [44] generalize the theory of signal stabili-

zation and extend it to consider random stabilizing signals. They also

establish various criteria to obtain stability information for a particular

class of nonlinear systems. Oldenburger and Boyer 1451 generalize the

theory developed in reference [40] for sinusoidal stabilizing signals.

Signal stabilization theory as developed in references [40 and [4]]

to [46] appears to hinge on the fact that the frequency of every component
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in the stabilizing signal is large compared to the significant frequencies

in the system. This assumption is consistent with the practical use of

signal stabilization for decreasing the output hunt in a self-oscillating

--system, since it is desired that neither the system hunt nor the stabiliz-

ing signal be present to any appreciable degree at the output. However,

the theory developed in reference [44] may easily be extended to cover the

case when the input spectrum has low frequency components.

Recently Gibson and Sridhar [40] have proposed a new method for con-

sidering certain specific nonlinear systems with sinusoidal inputs without

putting any restrictions on the frequency of the input. This method will

be discussed further in the next section.

It is felt that the theory of signal stabilization provides a better

insight into the problem of understanding the stability characteristics of

k particular class of forced nonlinear system. It should be pointed out

that it may be possible to interpret a signal stabilized nonlinear system

as either a forced or unforced stem, depending on whether the stabiliz-

ing signal generator is included within the "black box" representing the

nonlinear system or not.

3.4 The Dual Input Describing Function

The describing function (D.F.) is a very useful approximation in the

analysis of a certain class of nonlinear systems. It applies directly to

systems such as those shown in Fig. 3.1. It is based on the method of

harmonic balance of Kryloff and Bogoliuboff [8] and, as discussed above,

was applied to control systems by Goldfarb [9). Popov [47] has an in-

teresting discussion of the method of harmonic balance itself as it applies

to control systems. In all of this work the system under analysis is un-
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forced. It seems a direct step, however, to apply the conventional D.F.

to forced systems.

A nuaber of schemcs have been proposed for obtaining the closed

loop frequency response of a nonlinear system, for example, by direct

extension of the conventional D.F. . Among these methods, those of

Levinson [15], Thaler [48] and Ogata [49] are well known. Hill [16] has

proposed an ingenious use of the Nichols chart which is probably the most

convenient of all of these techniques. Kochenburger [10] in his original

paper discussed the extension of M peak to the D.F. plot and presumes

that one can read off the amplitude of the resonant peak of a sinusoidally

driven nonlinear system from the D.F. plot just as one does from the Ny-

quist plot for a linear system. Prince [50] has proposed a modification

of the conventional D.F. to obtain th closed loop response of a perfect

relay system. However the Prince D.F. does not appear to be of wide

applicability.

The error in all of the work cited above lies in the fact that the

conventional D.F. analysis postulates a single sinusoidal input to the

nonlinear elements. Naturally the frequency chosen will be that of the

input r. Now if the closed loop system is (uniformly) asymptotically

stable, then with ;.n input signal, this analysis is as valid as the con-

ventional D.F. analysis of unforced systems. This is so because in fact

there will be the single sinusoidal signal at e, for which the convention-

al D.F. analysis is designed.

Suppose, however, that the control system is not asymptotically stable

in the presence of the input r. Then the conventional D.F. is in error

because there is longer a single sinusoidal signal at e. It is a well
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known fact that in a nonlinear system asymptotic stability or instability

of the unforced case doe iot imply either stability or instability of the

forced system. Therefore it can be concluded that it is improper to employ

conventional D.F. for closed loop response calculations unless the stability

of the driven system has been established by other means. This fact is

apparently not appreciated by a significant segment of control engineers.

A number of dual input describing functions (DIDF) nave been proposed.

However, they may be applied to closed loop frequency response calculations

only under certain conditions that do not usually hold. West, Douce and

Livesly [51] have proposed a DIDF that is valid only if the two sinusoidal

components at the input to the nonlinearity are related by an integer. This

DIDF is rather clumsy to manipulate, but it can be used to detect subharmonic

response. It cannot be used to examine the general possibility of asynchron-

ous oscillations induced by the input in general, however. Oldenburger and

)oyer [45] have proposed a DIDF that is more convenient to maripulate, but

that is valid only if the two sine waves at the input to the nonlinearity

are widely separated in frequency. Thus this approach is usele3s within

the bandpass of the system. Sridhar and Oldenburger Ref [43],[44] have

developed a DIDF in which one of the signals at e is a stationary, Gaussian,

random function. It appears that this function may be employed to develop

the response of a nonlinear system to a random input. This problem has been

considered by Booton 52 , but of course the same objection a o previous

work with sine waves applies to this: it completely ignores the stability

problem. Gibson and Sridhar 461] have applied a general DIDF developed by

Sridhar L53] to the problem of closed loop frequency response and interest-

ing results have been obtained. It is shown in reference J46 that stable
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unforced systems may become unstable under certain driving functions and

that also the converse is true.

It is apparent that the DIDF must be developed until it is as simple

and reliable for forced systems as the conventional DF is for unforced

systems if it is to be useful for the specification of automatic control

systems for aero space vehicles. With the present rapid rate of research

progress in this area, it is possible that this will occur within the

next few years.

35 Conclusions

It is hoped that this chapter will throw some light onto the magni-

tude of the problem involved in considering the stability of forced sys-

tems. Considerable research on the problem of determining practical methods

for obtaining the stability of forced nonlinear systems must be conducted be-

fore any significent progress can be reported in this area. Even the dis-

covery of some approimate methods for determining the stability of certain

classes of forzed nonlinear systems, such as the describing function method

for a special class of unforced nonlinear systems, would be a definite

contribution. It does not appear at the moment that a unified method of

stability analysis applicable to all forced nonlinear systems will be dis-

covered in the foreseeable future, il at all. This last statement appears

to be reasonable in the light oi. the trend experienced in the field of non-

linear mechanics, wbere a number of special methods for obtaining stability

and other properties of a small number of special classes of systems is avail-

able. This same approach of trying to obtain special methods for different

types of forced nonlinear control systems is being adopted at the present.

Despite the fact that most specifications that might eventually be
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recommended for nonlinear systems may involve the response of the system

to specific inputs, it is felt that the problem of stability of the forced

system is intimately related to its response to inputs. Thus, for example,

it is possible to have a "stability specification" which states that a

limit cycle amplitude larger then a certain value cannot be tolerated.

The specified amplitude, of course, will depend on the applications.

It is felt that with the present state of the art, most of the research

effort for determining the stability of forced nonlinear systems should be

concentrated on obtaining methods for determining this information for

stationary systems. It is hoped that solutions to this problem will pave

the way for better understanding of the problem and eventual solution of

the stability of forced nonstationary systems.
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CHAPTER IV

THE RESPONSE OF AUTONCMOUS SYSTEMS

4.1 Introduction

A possible approach to the problem of specifications for nonlinear

systems is the construction of a mathematical model which is representa-

tive of the best system that can be devised for a given task. This sys-

tern, which is optimum with respect to certain specific requirements, and

its performance can be used as the upper bound on physical, but not

necessarily optimum, systems.

The question of which model is optimum for a given task must include,

in general, consideration of such qualities as reliability, economy and

performance, to quote three examples. In addition, one engineers' optimum

may well differ from another engineers' optimum within a given task.

The problem has been formulated in the literature (Bellman [54], p. 22),

(Merriam [5, p. 267), (Lee [56]) in terms of a classical problem in the

calculus of variations (Forsyth [57], Chapter 1). Here an index of per-

formaace, J(xy), is to be minimized (or maximized) by choice of the

function y:

T

J(x,y) - J k(x, y)dt (4-1)

where the vector Ix} represents the system state variables

the vector [y) is the system steering function

and the time T is related to the termination of the control problem.

The function k is chosen to include the considerations mentioned above

and the constraints of a given problem. In practice the choice of thic
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function usually involves a compromise between an accurate evaluatiin of

the physical process and a more tractable mathematical problem.

Solution for the function y as a function of time then defines an

optimum policy for the system, should such a policy exist, by means of

which optimum performance is achieved. General problems of this nature

are frequently insolvable.

The purpose of this chapter will be to examine, therefore, a speciali-

zation within the general problem which has received attention in the litera-

ture. The class of system to be considered are those that are autonmous

([], p. 32) and where y is to be determined so that the disturbed response

is time optimum.

The study of this restricted class of systems together with the re-

stricted nature of the performance index is warranted as it permits ex-

ploration of the techniques useful with these rather difficult problems.

The chapter reflects the state of the art and indicates that the approach

has much promise, but that there is the need for further work in this area.

4.2 Time Optimum Switched Systems

Engineers always try to build the best system possible from every

point of view, e.g., reliability, economy and performance. Often one system

quality must be sacrificed for another, and the resulting system is then the

best that can be built, i.e., optimum, after having taken all factors into

consideration. A specialization within this optimum concept is the perform-

ance specification of being "time optimm". The question to be answered

here is how should a system be built so that it will achieve its obj6ctives

in minimum time.

Some time ago engineers began to reason that perhaps the system that
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could us. the axiimm power available, all of the time, would be time

optimum. This idea is contrary to the concept of a linear system where

the ma:ximm power available in used only for one instant of time and a

leaser amount used at al other tims. The intuitive conclusion at this

stage was that a relay systea and a time optimm system were one and the

same thing.

A relay system is a nonlinear system with a fundamental property

that the nonlinearity, the relay, is separable from the linear portion of

the system. The configuration is like that of Figure 4.1 , rather than

the linear system shown in Figure 4.2.

Early attempts to analyse such systems were restricted to cases where

the linear portia of the system had a relatively simple forn, frequently

G(s) - or G(s)o( s ".s(l+ s)

(Bogner D5)), (Oldenburger [59]), (Weiswander [60 ),(Kahn [611)

Once the relay has been included in the circuit the question arises,

when must it switch? If the phase plane is used (this representation is

applicable to the second order examles of the paragraph above), where de

the switching boundaries lie?

The system shown in Figure 4,. wil switch aleong a line that is the

ordinate axis, Figure 4.3. Here the objective would be to reduce the error

and the derivative of the error to zero. Variations of the switching

boundaries include linear switching, Figure 4.4, and parabolic switching,

Figure 4.5. In each of these three diagrams there are several possibili-

ties; for example, changing the switching to a different quadrant of the

phase plane, or interchanging the relay polaraty.

With the introduction of the more complicated switching boundary, an
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additional element must be added to the system. This element will have

the task of determining where the system variables are with respect to the

boundary and which polarity to feed to the relay. The element will be a

form of computer and the configuration becomes that of Figure 4.6 for the

system corresponding to Figure 4.4 or 4.5.

None of the systems mentioned yet could be called successful, however,

except in restrictive cases. For example the configuration of Figure 4.1

witch the boundary of Figure 4.3 will switch many times before a region

near the origin is reached, and then it will oscillate about tho origin

(limit cycle). With the switching boundary of Figure 4.4, the system will

only reach the vicinity of the origin from a discrete number of points on

each side of thp boundary. From all other points the iystem will drive

toward one of two points on the abcissa, on either side of the origin.

The points will correspond to the magnitude of the relay output. Neither

of these cases are time optimum nor are they optimum in any sense.

The parabolic boundary of Figure 4.5 is time optimum for the special-

ized system with the linear portion described by G(s) = 1/S2o The tech-

nique used to deduce this boundary ([58], p. 17) is not suitable for use

with other systems as it depends on the phase plane technique and the re-

stricted nature of the system considered.

The relay used has so far been considered ideal. No relay is ideal

and a number of authors have attempted to extend the techniques used with

these rather special systems and boundaries to allow for physical relay

characteristics such as deaa'ind and hysteresis [60], (izawa [61]).

It is to be noted that any physical system must have deadband in the

relay mechanism in order to deactivate the system when it reaches the origin.
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Figure 4.6

System Cdafiguration for Non3imple

Switching Boundaries
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Alternatively the computing element can be designed to allow the system to

operate linearly in a region near th- origin. TLAa ia the dual-mode system

I(McDonald [63]), (Bulund [64]), a simple example of which can be derived

from Figure 4.4 as shown in Figure 4.7. The boundary of the linear region

of operation can take a number of forms and is left undefined in Figure

j4.7 for this reason. Some such procedure of deactivation or restricted

linear operation is necessary with all practical systems.

I It was suggested at this stage of the development of optimm switched

Isystems tnat the number of switchings needed for systems with real, distinct

roots, associated with the linear portion, is (n - I), where n is the sys-

j tem order (discussion to [60]), [58].

The next development in the state of the art was the complete analysis

Iof a second order system, again with an ideal relay. The systems investi-

gated were those that could be described by equations of the form:

00

y +21y + y + (4-2)

The investigators sought out every possible mode of operation and by

systnmatic elimination converged on the optimum (Flugge - Lotz 1651),

(Bushaw [66]), (Tsein [67], p. 136). Sufficient theorems and lemmas were

proven to substantiate tue elimination process and the optimu was proven

optimum. The results reported by Bushaw in his Ph.D. thesis [66] and re-

1 produced by Tsein [67] show, for example, that for the case where - - 0

in equation Q.i) the switching boundrries for optimum time response are

portions of the circles associated with the system singular points in the

phase plane, centers in this cas4 as in Figure 4.8.

It is fairly obvious that the tool whereby the results obtained so far

had been obtained is the phase plane method and the geometrical interpreta-
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Figure 4.8

jwi Switch n Boundaries for a

Second Ordar System with Zero Dampinig
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tion possible there. 2?ird iarder system analysis has been attempted on

the phase plane, or rather on two phae planes L54), (Chang [68). The

method is, however, rather cuizbersome and for practical purposes the phase

piano is restricted to second order system. This limitation has led to

the use of a state space and state variables (described elsewhere in this

voluie) and the use of more elegant mathematics.

Consider the cunfiguration shown in Figure 4.9 which is the forward

transfer function of the system to be examined. The nonlinearity is not

defined, as it is the variable to be used in the time optimization process.

It is, however, constrained to be a real, measurable function of the input

variable i and bounded above and below such that -l1 -ui(t)l 1i. The form

of the linear portion of the system is not necessarily constrained to the

form shown in Figure 4.9. The form can vary considerably with the only re-

striction that the system equations can be written in matrix notation arA

in canonical form as described elsewhere in this volume (Chapter 2).

The system equations of this example are:

0 1 0 0 0

- 0 1 2+0O u + 00 (4-3)

er3f2C0 -2 -3 1for. QOI , equation 1)

{} - [A](x + [B3{uj + ()
Transforming from the physical variables {x} to the state variables {y.with

the transformation, fx} is:

[x} - [H]{y) (4-5)
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Forward Transfer Function of a System

with a Separable but Undefined Nonlinearity
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where the matrix [H] is given by a solution of the matrix equation:

[11] - [A][H] with initial con~ditions [H(O)]' - [i] . (4-6)

The matrix [H] is defined as the system impulse response matrix in

terms of the variables (xI . . .x, ) and may also be determined as:

[H] - 0 [A]t

Were [A] is the system matrix.

The solution to equation (4-4) may now be determined by lagranges

method of variation of parameters ([21, chapter 10, section 12). Differ-

entiating (4-5) and smbstituting i (4-4)8

t - [I](y) + [H

X}L _j ]A][H( } + B]{~j +

Comparing these two equations with the help of (4-6) one gets:

[Hrl}f -[B]{) + (f} (4-9)

Integrating, returning to the original variables and using the initial

condition vector ('(n4 .(3 is found to be:

(x~t - [H{x(0)) + [H]f [H~kB][uJ dV + [H]f [H] f dr (4-10)
• m

This to the solution of the system equations and can be found provided

equation (4-6) can be solved and the integrations can be carried out. The

solution of equation (4- ) is unfortunately a difficult if not impossible

task in the general case. Whether or not these integrations can be per-

formed depends largely on the fer of fu(t . The restrictions already

placed upon the nonliaearity will, however., usually make the operation

possible.
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When the system under consideration is autonomous i.e. If(r30

the problem becomes that of reducing the vector {x(t)J to the null vector.

Equivalently the system must "hit" the origin of the state space. From

equation (4-10) it can be seen that this situation will have been achieved

when:

-KX(O) f f t IB] fu3 d2 t j[ (1I]( u(1)) d -r (4-11)

A number of things must now be proven. For example it must be shown that

there exists a t,> 0 for which the equation (4-11) is satisfied for any u(t).

Then it must be demonstrated that of all the different values of to that will

satisfy this equation one of them, t*, will be minimized by a suitable choice

of u(t). Finally the form of u(t) must be determined.

The various points to be proven have been examined rigorously in the

literature [20], (Bellman [69]), (Kurzweil [70]) and the proofs, which are

reasonably lengthy and difficult, will not be reproduced here. The proofs

indicate, however, that a vector M must be found such that the "dot"

product below is maxim z d.

This is the same as maximizing:

I

f'~ [](~}(4-13)
It is shown in the literature referenced above that this maximum exists

and will be achieved when:

fu} - sgn~j}Y (4-14)

i~e. luil-
The procedure described above can be demonstrated by means of the following

example.
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Consider the case of a linear oscillator 'idth the circuit configura-

tion shown in Figure 4.10. This particular ex.mple i - chosen as it is one

'#*cussed by Bushaw ([66], p. 42)a His detailed discussion leads t. the

correct switching boundaries (ref [ij, p.42) but with rather more effort

than is required using the method described above.

The system equations in matrix form are:

{'}m 1+ "O (U ..

L J L O oJ [xj L)
and it is known that for time optimm response the function u can take on

the values of +1 or -1. ". order to obtain the matrix solution the method

of Lagrange can best be applied here. The solution to the matrix equation

below must be found first:

[ - [A] [H] with [H(O)] - [] (4-16)

which in this case becomes:

IHll H12H2!" H22

;21 H22(4-17)

This matrix equation yields four second order differential equations which

can be solved with the initial conitions to give:

HI1 = cost, H12 - sit H21 a--ist and H2 -cost

or [H] Co[costL-six, cosJ*

therefore

-1 F 1 and [] [H] -[B] - s (4-19)[H] [cos
sint, cost 'I
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System with the Linear Portion a

Linear Oscillator
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and f'3[]f-l int *t72 Cost (4-20)
which can also be written:

f 7},[T] - Acos(t + d) A and d a. futions of 10 ,2 (4-21)

So it is seen that:

u - l1 when Aos(t + d) > 0

and u--lwhen Acs(t + d) > 0 (4-22)

and it is indiately apparent that the relay sist switck every 1 secends.

If the system is to reach the origin of the state space the final solu-

tion trajectory wmst go through the origin, There will be two such final

trajectories, one for each of the two cases, u - +1 and u - -1. Further-

more, since these trajectories are final trajectories, the system mist

Nswitch onto" them sooner or later and they are therefore part of the sys-

tem switching boundary.

To find the final trajectories a technique suggested by Ia Salle [20]

and others can be used* Let T - -t in the system equations, equation (4-15),

and solve the equations with the initial conditions (0,0), i.e. let tim

run backwards away from the final point, the origin. Allowing tim to run

backwards for 1? seconds will generate that portion of the switching bound-

ary through the origin. With this substitution equation (4-15) becomes in

component form:

dx (4-2)

d12

When u - +1 we get

xl(T) - 1- cosT
2 2

x2 (T)--sinT or eliminating T (xi -1) x2 -1 (4-24)
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When u - -1 we get

xl(T) - -1 + cosT
2 2

x2(T) - sinT reliinating T (xjl) +2 1 (4-25)

Considering the signs in the parametric equations and allowing T to increase

to V seconds# two sei-circles result as shown in Figure 4-31. The direction

of increasing t or decreasing T is toward the origin. Choosing an arbitrary

final switching point on this portion of the boundary, say at (1, -1) for

conveniency, the solution trajectory immediately prior to this final switch-

ing can be determined from the equations (4-23) with initial conditions

(1, -1) and with u - -1. The result is:

xI(T) - -1 + 2 cosT + Sin T
2 2

x2(T) - 2sinT - cosT or eliminating T (xl + 1) + 5 (4-26)

This trajectory is drawn in dotted lines on Figure 4.1. The parametric

equations again indicate the direction of increasing t (decreasing T), thus

showing that the portion of the state plane above the switching boundary

found so far corresponds to u - -1, and the portion below to u - +1. Allow-

ing time to run backwards along the dotted trajectory for r/ seconds deter-

mines one point on the switching boundary to the left of the existing portion.

This point is labeled B in Figure 4.11. Constructing trajectories from

different initial points on the known portions of the switching boundaries

thus will yield additional portions of the boundary. The complete picture

is clearly exactly that of Figure 4.8. It is to be observed that the compon-

ents of the maxiizing vector (M do not have to be found explicitly, but

rather the possible behavior of Equation (L-14) is observed and the positi6n

of the boundaries is deduced from the zero crossings of -7 T]
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Construction of Switching Boundaries

for inear Oscillator Circuit
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I The method outlined in this section is a method that will lead to

r switching boundaries which thus defines a time optimum policy from any

admissable starting point in the phase space. The method does allow for

f solution of systems where the linear portion is described by a linear time

varying equation . The solution is only possible then in the restricted

1 cases when equation (4-6) can be solved.

The boundariev of the example system and of any more complicated sys-

tem must be instrumented in the phase space. The position of the system

twith respect to these boundaries must be determined continuously in order
that the relay can be switched to the correct polarity. There is also the

I additional problem that frequently not all the physical variables are

available from which the state variables must be calculated. In this

situation a prediction or estimation of the missing variables must be

t attempted (Kalman [71] ).

The sequential procedure of boundary determination, boundary instru-

j mentation, and the determination of system position via measurement or

estimation is a complicated task even for simple systems. In addition,

Ipre-determination of the optimum policy does not allow for unpredicted
changes or disturbances. The concept of a multistage decision process

(dynamic programming) (Bellman [72]) suggests that the nect3sary steps

mentioned above should be undertaken repetitively by oni v-onfdring element.

The system optimum policy would then be considered as the solution of a syn-

thesis problem that can be reviewed from moment to moment as the solution

proceeds. These latter ideas are discussed in more detail in the next

section.
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4.3 The Synthesis Problem

A basic problem associated with switched systems is that of determining

the switching boundaries. These are the hyper-surfaces located in the sys-

tem state space where the system steering function must change sign in order

to adhere to the optimum policy.

The technique outlined and referenced in the last section will solve the

problem of finding the form of the steering function u as a function of time.

In the case of autonomous systems and for time optimum response it is shown

that:

u - sgn N 1 (4-27)

where the matrix [Y] is time dependent. In order that the system shall

satisfy this relation it is necessary, therefore, to determine the points in

the state space where the sign of the function changes. To find the hyper-

surfaces made up of all such points, the form of the steering functionr,, al-

ready known as a function of time, must be determined as a function of the

state variables. It is sometimes written that, the zero crossings of u, as

a function of time, must be mapped into the state space. This is the desired

situation, as it is assumed that the state variables can be constructed one

way or another [71] and hence are available to feed the computing elements of

Figures 4.6 and 4.10. The determination of the switching hyper-surfaces a.:

functions of the state variables will be defined as the synthesis problem

and this part of the theory of optimum systems is considered as a problem

separate from the problem of determining the form of the function u as a

function of time.

If the optimum policy can be determined with certainty ahead of time,

as was the case with the simple example concluding the last section, the
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computing element may construct and then monitor the system state variables.

The computing element will decide where the system solution is in the state

space with respect to the switching boundaries, and make a simple decision

as to the optimum relay position as the soLution proceeds.

Instrumentation in these cases is possible in a number of ways, e.g.

two variables can be applied, one to each of the deflection plates of a

calibrated oscilloscope. The tube face is then masksd to match a switching

boundary and monitored by a photo-electric cell (Hopkin [73]). Techniques

suitable in these cases can be compared with the technique of pre-program-

ming.

A more powerful approach to the proDlem exists, however, that can be

used to take care of the situation when the optimum policy is known initially.

The approach will also take care of situations when the optimum policy may

well change as the solution proceeds. The approach is that known as dynamic

programming [72].

The title dynamic programming is a phrase coined to describe the pro-

cedures associated with the solution of a multi-stage decision process. The

procedure involves sampling the system position in the state space repeti-

ively. At each sampling the computer makes a decision as to what the optimum

policy is at that time. For *xample, there are two choices available in the

case of a time optimum system with a single relay. The optimum policy de-

cided at one sampling time is pursued until the process is repeated at the

next sampling time.

Optimum systems defined in terms of their performance indicies that are

to be treated in this fashion must possess the basic property of being Marko-

vianl i.e., after any number of decisions, say k, the effect of the remaining
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N-k stages of the decision process upon the total return must depend only

upon the state of the system at the end of the k-th decision and the subse-

quent decisions (Q54], p. 54). Systems that are Markovian in nature will

then perform in a manner that is optimum overall, even when the decisions

Lre made repetitively as the solution proceeds. The Markovian property is

fortunately characteristic of most systems encountered.

It is to be observed that the past history of the system need not be

considered in determining the future policy, and consequently such a proced-

ure will allow for unpredicted disturbances, etc.

Instrumentation of the computer element is clearly no longer possible

by simple means. In fact the suggested procedure has only become feasible

with the advent of high speed digital computers which inevitably perform

the computing task. There is still a finite computing time associated with

the decision process, of course, and that places a limitation on the sampling

frequency and in turn on the system performance.

An example of a method where the optimum policy is reviewed as the solu-

tion proceeds has been presented recently by Smith [74] and the technique

will be summarized here.

Equation (4-10), the solution equation for the state variables, is re-

produced here but with f(r) a O:

t

f{x (t) [H ]{xy(0,)} + [14 (t)~ [~Ht) [B(tiA tu(t-C)) ds (4-28)
0

Allowing that in a time optimum problem the function u can only take on the

values plus or minus one and that this fumction will change sign according to

eiuation (4-27) at times t 1 , t 2 .... tn,T where 0(t 1 °.. <T, equation (4-28)

can be written:
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EH (t)] ~{(t 1X (O) ~+fi]Bf~ t dt .. +

T

+ f .... d't (4-29)
tn-1

If the set of n equations represented by the matrix notation are integrated,

the result will be n simultaneous, algebraic equations with the times

tl..0o*oT as unknowns. The solution of simu.taneous equations on a digital

computer is possible by means of well kncwn techniques. Consequently two

values of T, say T+ and T- corresponding to the choice of sign outside the

bracket on the right hand side of Equation (4-29), can be calculated with

knowledge of the initial conditions. The computer can now make a decision

whether T+> T- or T-> T+, and can use the result of this decision to

activate the relay in the appropriate direction. This procedure can be

repeated continuously by sampling the system at intervals to obtain new

initial conditions, i.e. the values of the state variables at the time of

sampling. The sampling frequency can be made as small (or as large) as is

desired, weighting the computing ti= against the system response time.

A number of other authors working with different forms of integral

type performance indicies have sketched methods for the continuous solution

of the synthesis problem. For example Lee [56] indicates possible methods

for the continuous solution of minimum-energy, minimum-time and minimum-

error systems,

The results that are given by the authors indicate that the desired

response is possible with the techniques suggested. It is to be observed

that the performance is obtained at some expense for the amplifier of the

conventional system is replaced by a relay and a digitial computer!& This
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fact is not, however, of direct concern if the objective in reviewing these

methods is to determine the best possible system, for purposes of system

evaluation. The physical construction of an optimum system is a separate

problem which has been solved by one author, as described in this section.

4.4 Conclusions

The methods outlined in these sections depend to a large extent on the

form of the system and on the form of the optimum response desired. The

time optimum systems are those where the steering function is chosen to

minimize the upper limit of the integral in equation (4-1). At the present

state of the art much attention has been given to the time optimum problem.

The solutions that do exist, however, are restricted almost entirely to

systems of second order. The exception discussed in the last section used

the full capacity of a large digital computer to handle a fourth order sys-

tem. It is thue clear that for systems other than the simplest systems the

existing methods are far from economic and cannot be considered as practical

as yet .

The concept of using an optimum system as the upper bound on all systems

that are to fulfill a given task is not restricted to the time optimum case.

For example other optimum systems require that u be chosen with a fixed upper

limit on the integral to minimize (or maximize) the integral itself. Alter-

native methods that may lead to the solution of these problems must be sought.

It has been shown (Rozonoer ['L5]) that all problems of this nature can

be interpreted as a problem of maximizing (or minimizing) a coordinate in the

state space, together with some constraints, For example if there is a sys-

tep described by n equations A- written in equation (4-4) and the optimum

system is defined as a time optimum system with the additional constraint:
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T

o F(x,u,4) dT A (4-30)

one can define two new variables, xn+1 and xn+2 . These variables would be

defined:

r+l - t i.e. Xn+1 = 1

t
n+2 F(x,u,7)dt i.e, Xn+2 -F(x,u,t) (4-31)

The system equations can now be re-written in the form of equation (4-4) but

with n + 2 variables.

The requirement for the system to be optimum is now that the coordinate

n+1 is to be minimized with the constraint that the coordinate n+2 (T) < A.

'--tems of this type, where a coordinate or a linear combination of

coordinates must take on an extreme value, can be optimized by the Principle

of Pontryagin [76] (with a unified procedure). While the Maximum Principle

of Pontryagin is in the hands of the applied mathematicians, at the present

state of the art, it is to be hoped that, with attention from qualified

engineers, it will be proven to be of great practical value in the design

of optimum automatic control systems.

In conclusion, it is remarked that the methods for the determination

and construction of the configuration necessary for an optimum system of

any sort are as yet in their infancy for anything but the simplest systems.

The methods reported in this chapter, however, indicate that in many cases

unique optimum configurations exist in the mathematical sense of the word.

The techniques associated with the method of dynamic programming and/or

the Maximum Principle of Pontryagin seem to provide the paths along which

practical solutions will be found. This is an area in which there is a
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considerable interest from the engineering world at the9 present tinare
Further work will undobtediy prove to be of considerable value for the
better evaluation and construction of automatic control systems,
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CHAPTER V

THE RESPONSE OF FORCED NONLINEAR SYSTEKS

5.1 Introduction

While the stability and response of autonomous nonlinear systems is

of considerable interest to the automatic control specialist and to a

number of applied mathematicians throughout the world simply for the sake

of the problem, the user of a control system could hardly be less interest-

ed. The unforced system is of no conceivable engineering use. For a

system to be of engineering interest it must function properly over a

spscified range of inputs.

This report has considered the unforced system, not because of any

misapprehension that such systems are of any practical use, but rather

because such studies should lead to a b-tter understanding of the forced

system. It is hoped that the techniques used for forced systems may be

extended to the analysis of unforced systems. Such extensions are not

easy of course. Let us cite tw" examples of different kinds of problems

that arise. First, it has been shown above that the phase plane analysis

may be extended to an approximate analysis of a forced time-invariant

second order system. In this example the only difficulty arises from the

approximation required of the input and the increased labor required to

obtain the result. A second example however, will bring out a more basic

difficulty. In the discussion above on the DIDF it has been shown that

the use of the conventional DF for obtaining closed loop frequency response

is fraught with danger. Examples can be given in which the conventional

DF yields an apparently perfectly satisfactory closed loop frequency re-
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sponse for a system that is actually unstable. This is the second class of

problem. Not merely is zhe method of analysis slightly more cumbersome in

forced systems, but rather it yields an incorrect answer.

Turn now to the problem of direct concern; the forced nonlinear system.

This research is concerned with the development of specifications for con-

trol systems. Clearly the AF is not interested in the detailed nonlineari-

ties involved in a particular system. The AF is interested in performance,

and the particular techniques involved in meeting the specifications must

remain in the design province. Thus it would seem improper for this group

to become involved in compiling a list of all possible nonlinearities and

specifications for them unless this were the sole method open. The approach

that appears of most validity would seem to be the establishment of the

optimum performance within the given set of constraints for a given situa-

tion. This theoretical optimum may then be used as an Index of Performance

with which to judge the performance of competing physical systems.

It must be asked why this approach is suggested when it obviously fail-

ed with linear systems. Considerable effort was extended in attempts to ob-

tain general Indices of Performance for linear systems. It will be recalled

that such IP's were sought in terms of svstem parameterso In this new effort

the IP will be formulated in terms of the constraints on the system. Such

constraints might be maximum force or torque, maximum power or a finite

stored energy with which to accomplish the task. In effect these are the

basic and fundamental nonlinearities of the system, and meaningful maximum

performance values can be formulated within them. Such constraints do not

exist in linear systems, of course, and so it was impossible to formulate

such a policy concerning them in the linear portion of this study. Since
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physical constraints exist universally in practice, this new approach should

be of wide applicability.

To establish the optimum system within a given set of constraints it is

necessary to define the sense in which the word optimm is used. Most of the

work done to date on the optimum problem concerns the time optima case.. The

desired task is to reduce the error to zero in minimua time. This is a reson-

able approach, although perhaps not the simplest, and is discussed in Section

5.3. In Section 5.2 the conventional phase plane analysis is extended to the

approximate calculation of the response to an arbitrary input. Of course the

practical limitation of the phase plane to second order systems severely

limits the usefulness of this approach. It was not thought necessary to in-

clude a separate section in this chapter for the DIDF. This technique is

definitely of use in finding the rerponse of a nonlinear system to a sinu-

soidal input, but the method has already been discussed in the chapter on

the stability of forced systems.

In Section 5.4 the response of a nonlinear system to random noise is

discussed. At first glance this might seem to be a dgression from the main

stream of this survey. It must be pointed out that this is not so.

Unfortunately the carry-over of linear system concepts and points of

view in the thinking of many investigators when they turn to nonlinear sys-

tems seems domed to failure. This persistance would appear to be the only

logical answer, for example, in the continued and unwarranted attention

paid to the response of a nonlinear system to a sinusoidal driving function.

The sine wave no longer reigns supreme in nonlinear system analysis; it is

reduced to just another special input that provides no special insight to the

overall behavior of the nonlinear system.
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Wiener has proposed that the basic and most general input for a non-

linear system is the random signal provided by Brownian motion. He points

out that from the response of a nonlinear system to Brownian motion, it is

possible to predict its response to any input; much as it was possible with

the response to sine waves in linear systems. Thus Brownian motion input

occupies the same position with r~spect to nonlinear systeis as does the

sinusoidal input to linear systems. This concept appears very powerful,

Llthough it is not yet in an operational condition, and it is discussed in

Section 5.4.

5.2 The Phase Plane for Forced Systems

The phase plane can be used to calculate and display the response of

forced second order systems (Gibson [77]). The approach is, of course, not

aa simple as with autonomous systems but is still quite practical. The in-

put may be arbitrary and the approach makes use of all of the convenience of

construction methods, such as the delta method and isocline mrethod, that are

available for autonomous systems.

The method is based on representing the actual input by a train of

equivalent impulse functions. It is also necessary to represent the system

nonlinearity in an equivalent piecewise linear fashion. Each impulse is

considered as an initial condition for the interval between it and the next

pulse, superimposed on the final condition of the system at the end of the

preceeding interval. The central convenience of this approach lies in the

fact, as pointed out by TriLmer [781 , that in a second order system an

impulse appears simply as a sudden increment of velocity in the system.

Thus no change need be made in the isoclines or delta function used in the

construction of the phase portrait of the autonomous system. The method
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appears to be of promise as an approxJ-mation technique for forced second-

order systems but requires further experience before it can be recommended

as a method for obtaining proof of compliance to performance specifications.

Gibson [77] works several examples, but his presentation is not complete or

exhaustive.

5.3 Time Optimum (Switched) Nonautonomous Systems

Although most studies of the optimum control problem restrict themselves

to the autonomous system, a few workers have considered the more difficult

problem of time-optimum nonautonomous systems. Amoung these are Krasovskii

[79] , Kalman and Koepcke [80], LaSalle [20] and Fuller [83.

LaSalle has developed a number of basic theorems for forced, time vary-

ing parameter, time optimum control systems, but he does not discuss the

engineering implications of his work. Kalman and Koepcke point out certain

of the implications of such systems, and Fuller further clarifies the

situation.

It is no longer sufficient in general to use only the state variables

of the autonomous system for the description of the forced system. The state

variables to be fed into the logic element or controller must now consist of

a state description of the plant plus a state description of the input

x(t)j - [A(t)] fx(t) + [B(t)] fu(t)i + ff(t) (5-1)

It must be pointed out that this formulation of the equations of a non-

linear closed loop system is not complete. A further nonlinear relation

will be required to relate fx(t)j and u(t). For example in the system in

Figure 3.1i, it will be found convenient to identify the state variables with

error, the steering function with m, and the forcing function with the input.

Thus in matrix form
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f4(t)3 L A(t)]~ e(t)j + [Bk-t)1(t~14~) 52

where f(t) of equation 5-i is now say g(r) m h(t)

Now m - f(e) say. It will be impossible to substitute this relation into the

matrix formulation and manipulate because matrix algebra is a linear algebra.

Thus the matrix relation is an open loop description of a portion of the sys-

tem. When th. noniintar realaion is considered after the matrix manipula-

tions are complete, the most difficult problem still remains. Most authors

ignore this puoblem completely although a few of the bravest acknowledge its

existence. None solve it.

In order to define the optimtum trajectory and the optimum switching

boundaries in the methods discussed in the literature the input must be

defined in the form of a differentiable function, e.g. a polynonial. This

is a restriction. Note that under these conditions the optimum switching

boundaries are directly dependent upon the description of the input signal.

This means that the complexity of the system will rise rapidly if this

approach is followed wih tht reault that all insight will be lost. Second-

ly, since the optium design la uniquely tied to the defined input 6tate

coordinates, even if it could be instrumented, the system would be useful

for only the one inpat for which it was designed. Of course this situation

is impossible. Fortrunately, however, severa) alternative schemes present

themselves.

Kalman and Koepcke (80] suggest that the actual input be approximated

with a curve of given dag-et over given segmen-r. of time. Th7he tne co-

efficients of the approximating polymial need be found only once per time

segment. These numbers could be entered into the Opticmt switch.tng curve

calculations, thus., the switchi.ng boundaries co'uld be rza'Lculated once each
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segment. The concept of switching boundaries in the state space for a

nonautonomous system appears in reality, however, to be a rather cumber-

some one and perhaps deserves to be abandoned for a more sophisticated

approach. Bellman suggests that the concept of a multistage decision

policy or dynamic programing is directly applicable here [54].

The philosophy of approach is as follows. A general performance index

or payoff function is defined in terms of the system state variables and the

state description of the input.

IP - f Q (Xl,X2,x3,...Xn,rl,r 2 , . . . ,prn ) d t (53
-( f

0

At given instances of time the question is asked, which state of

the relay will optimize the IP at this time? The question is asked

sequentially in time and the relay adjusted accordingly as the solution

proceeds. So long as the system, described in terms of the state variables,

possesses the Markovian Property ([54], p. 54) (that is, we do not have

time delays nor a "delay differential equation" to describe the system)

Bellman has shown that a sequence of such optimum decisions is optimum

overall. Naturally the engineering implementation of such a scheme is

considerably more complex than this naive description might indicate, and,

in fact, engineering feasibility studies of it are only now being initiated

in various engineering research laboratories. Without doubt, this is a

most chaLanging area for future research and ties in directly with the

already wide spread activity on the concept of adaptive control.

5.4 Response of Nonlinear Systems to Random Inputs

The response of a certain class of nonlinear systems to random inputs
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has been investigated by some researchers. Considerable effort has been

expended in investigating the theory of nonlinear filters. Wiener [82]

considers the response of a particular type of nonlinear filter to Brown-

ian motion input. The type of filter to which Wienerts method is applicable

is the one in which it is possible to separate the filter into two distinct

blocks in tandem, one block being linear and the other nonlinear of the

functional, instantaneous (non memory) type. Wiener shows that the know-

ledge of the Brownian motion response of such a system is sufficient for

the determination of its response to any other input. The application of

this theory to the investigation of the response of a nonlinear feedback

system is not known at the moment. Bose [83] also considers the problem

of determining the response to random inputs of a filter similar to the

one treated by Wiener.

The determination of some statistical characteristics of the output

of certain nonlinear nonclosed loop systems with random inputs is consider-

ed by Rice [84], Ianing & Battin [85] and Sridhar [53].

The problem of analysis and synthesis of nonlinear feedback systems

subject to stochastic inputs is certaibly a wide open area for research

and warrants considerable effort. This is evident when one considers the

work of Wiener, since this provides a fresh viewpoint to the whole problem

of analysis and synthesis of nonlinear systems. At the present Wiener's

work is not applicable to any but the most trivial practical cases.
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